Alfaro, Emilio J.; Elías, Federico; Cabrera-Caño, Jesús
Astrophysics and Space Science, Volume 324, Issue 2-4, pp. 141-146
12/2009
We perform a study into the spatial and kinematical distribution of young open clusters in the solar neighborhood, distinguishing between Gould Belt and local Galactic disk members. We use a previous estimate of the structural parameters of both systems obtained from a sample of O to B6 stars from Hipparcos. The two star-forming regions that dominate and give the Gould Belt its characteristic inclined shape show a striking difference in their content of star clusters: while Ori OB1 is richly populated by open clusters, not a single one can be found within the boundaries of Sco OB2. This is mirrored in velocity space, translating again into an abundance of clusters in the region of the kinematic space populated by the members of Ori OB1, and a marginal number of them associated with Sco OB2. We interpret all these differences by characterizing the Orion region as a cluster complex typically surrounded by a stellar halo, and the Sco-Cen region as an OB association in the outskirts of the complex. The different contents of star clusters, the different heights above the Galactic plane and the different residual velocities of Ori OB1 and Sco OB2 can be explained in terms of their relative position with respect to the density maximum of the Local Arm in the solar neighborhood. The origin of this feature could have been the interaction of a density wave with the local interstellar medium close to the Galactic co-rotation radius.