Gonçalves, D.; Villegas, T. A.; Marcolino, W.; Lorenz-Martins, S.; Borges Fernandes, M.; Kanaan, A.; Pereira, C. B.; Daflon, S.; Ederoclite, A.; Alfaro, E. J.; Ribeiro, T.; Vázquez Ramió, H.; Schmitz, T.; Martínez-Delgado, D.; JPAS Collaboration
Asymmetrical Planetary Nebulae VI conference, Proceedings of the conference held 4-8 November, 2013. Edited by C. Morisset, G. Delgado-Inglada and S. Torres-Peimbert. Online at http://www.astroscu.unam.mx/apn6/PROCEEDINGS/, id. #32 (2014).
04/2014
The Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a new astronomical facility dedicated to mapping the observable Universe in 59 colors, and will produce high-quality images and an unique spectral resolution over the 8000 deg^2. It will consist of two telescopes. One of 2.5-m (J-PAS) and another of 0.8-m (J-PLUS, mainly for calibrations). The former will have a dedicated 1.2-G pixel survey camera (containing an array of 14 CCDs) with a FoV of 5 deg^2. It is planned to take 4–5 years and is expected to map the above area to a 5σ magnitude depth for point sources equivalent to i˜23.3 over an aperture of 2 arcsec^2. The J-PAS filter system consists of 54 contiguous narrow band filters of 100-Å FWHM, from 3,500 to 10,000Å. To those filters 2 broad-band ones will be at the extremes, UV and IR, plus 3 SDSS g, r, and i filters. J-PLUS, on the other hand, comprise 12 filters, including g, r, i and z SDSS ones. Though about 2,500 PNe (confirmed spectroscopically) are known in the Galaxy, only about 20 objects have been identified as halo PNe. They were found from their location, kinematics and chemistry. Halo PNe are able to reveal precious information for the study of low- and intermediate-mass star evolution and the early chemical conditions of the Galaxy. The characteristic low continuum and intense line emissions of PNe make them good objects to be searched for by J-PAS. For instance, the halo PNe BoBn 1, DdDm 1 and PS 1, located somewhere between 11 and 24 kpc from the Sun, have B magnitudes of 16, 14 and 13.4, respectively. Such values are easily encompassed by J-PAS, given the typical limit magnitude of the survey. Because of the low number of halo PNe detected so far, we are developing tools to find these objects by using J-PAS/J-PLUS, and planning a follow-up study for any possible candidate identified by the survey. Color magnitudes diagram able to separate PNe from other strong line emission objects are being explored by the group and results are discussed in this contribution.